605 research outputs found

    Spin-S Kagome quantum antiferromagnets in a field with tensor networks

    Full text link
    Spin-SS Heisenberg quantum antiferromagnets on the Kagome lattice offer, when placed in a magnetic field, a fantastic playground to observe exotic phases of matter with (magnetic analogs of) superfluid, charge, bond or nematic orders, or a coexistence of several of the latter. In this context, we have obtained the (zero temperature) phase diagrams up to S=2S=2 directly in the thermodynamic limit thanks to infinite Projected Entangled Pair States (iPEPS), a tensor network numerical tool. We find incompressible phases characterized by a magnetization plateau vs field and stabilized by spontaneous breaking of point group or lattice translation symmetry(ies). The nature of such phases may be semi-classical, as the plateaus at 13\frac{1}{3}th, (1−29S)(1-\frac{2}{9S})th and (1−19S)(1-\frac{1}{9S})th of the saturated magnetization (the latter followed by a macroscopic magnetization jump), or fully quantum as the spin-12\frac{1}{2} 19\frac{1}{9}-plateau exhibiting coexistence of charge and bond orders. Upon restoration of the spin rotation U(1)U(1) symmetry a finite compressibility appears, although lattice symmetry breaking persists. For integer spin values we also identify spin gapped phases at low enough field, such as the S=2S=2 (topologically trivial) spin liquid with no symmetry breaking, neither spin nor lattice.Comment: 5 pages, 3 figures, 1 table + supplemental materia

    Vertex-Facet Incidences of Unbounded Polyhedra

    Get PDF
    How much of the combinatorial structure of a pointed polyhedron is contained in its vertex-facet incidences? Not too much, in general, as we demonstrate by examples. However, one can tell from the incidence data whether the polyhedron is bounded. In the case of a polyhedron that is simple and "simplicial," i.e., a d-dimensional polyhedron that has d facets through each vertex and d vertices on each facet, we derive from the structure of the vertex-facet incidence matrix that the polyhedron is necessarily bounded. In particular, this yields a characterization of those polyhedra that have circulants as vertex-facet incidence matrices.Comment: LaTeX2e, 14 pages with 4 figure

    Critical rainfall conditions for the initiation of torrential flows: results from the Rebaixader catchment (Central Pyrenees)

    Get PDF
    Torrential flows like debris flows or debris floods are fast movements formed by a mix of water and different amounts of unsorted solid material. They generally occur in steep torrents and pose high risk in mountainous areas. Rainfall is their most common triggering factor and the analysis of the critical rainfall conditions is a fundamental research task. Due to their wide use in warning systems, rainfall thresholds for the triggering of torrential flows are an important outcome of such analysis and are empirically derived using data from past events. In 2009, a monitoring system was installed in the Rebaixader catchment, Central Pyrenees (Spain). Since then, rainfall data of 25 torrential flows (“TRIG rainfalls”) were recorded, with a 5-min sampling frequency. Other 142 rainfalls that did not trigger torrential flows (“NonTRIG rainfalls”) were also collected and analyzed. The goal of this work was threefold: (i) characterize rainfall episodes in the Rebaixader catchment and compare rainfall data that triggered torrential flows and others that did not; (ii) define and test Intensity–Duration (ID) thresholds using rainfall data measured inside the catchment by with different techniques; (iii) analyze how the criterion used for defining the rainfall duration and the spatial variability of rainfall influences the value obtained for the thresholds. The statistical analysis of the rainfall characteristics showed that the parameters that discriminate better the TRIG and NonTRIG rainfalls are the rainfall intensities, the mean rainfall and the total rainfall amount. The antecedent rainfall was not significantly different between TRIG and NonTRIG rainfalls, as it can be expected when the source material is very pervious (a sandy glacial soil in the study site). Thresholds were derived from data collected at one rain gauge located inside the catchment. Two different methods were applied to calculate the duration and intensity of rainfall: (i) using total duration, Dtot, and mean intensity, Imean, of the rainfall event, and (ii) using floating durations, D, and intensities, Ifl, based on the maximum values over floating periods of different duration. The resulting thresholds are considerably different (Imean = 6.20 Dtot-0.36 and Ifl_90% = 5.49 D-0.75, respectively) showing a strong dependence on the applied methodology. On the other hand, the definition of the thresholds is affected by several types of uncertainties. Data from both rain gauges and weather radar were used to analyze the uncertainty associated with the spatial variability of the triggering rainfalls. The analysis indicates that the precipitation recorded by the nearby rain gauges can introduce major uncertainties, especially for convective summer storms. Thus, incorporating radar rainfall can significantly improve the accuracy of the measured triggering rainfall. Finally, thresholds were also derived according to three different criteria for the definition of the duration of the triggering rainfall: (i) the duration until the peak intensity, (ii) the duration until the end of the rainfall; and, (iii) the duration until the trigger of the torrential flow. An important contribution of this work is the assessment of the threshold relationships obtained using the third definition of duration. Moreover, important differences are observed in the obtained thresholds, showing that ID relationships are significantly dependent on the applied methodology.Peer ReviewedPostprint (author's final draft

    Carbon-based materials for humidity sensing: a short review

    Get PDF
    Humidity sensors are widespread in many industrial applications, ranging from environmental and meteorological monitoring, soil water content determination in agriculture, air conditioning systems, food quality monitoring, and medical equipment to many other fields. Thus, an accurate and reliable measurement of water content in dierent environments and materials is of paramount importance. Due to their rich surface chemistry and structure designability, carbon materials have become interesting in humidity sensing. In addition, they can be easily miniaturized and applied in flexible electronics. Therefore, this short review aims at providing a survey of recent research dealing with carbonaceous materials used as capacitive and resistive humidity sensors. This work collects some successful examples of devices based on carbon nanotubes, graphene, carbon black, carbon fibers, carbon soot, and more recently, biochar produced from agricultural wastes. The pros and cons of the dierent sensors are also discussed in the present review

    The Dust and Molecular Gas in the Brightest Cluster Galaxy in MACS 1931.8-2635

    Get PDF
    We present new ALMA observations of the molecular gas and far-infrared continuum around the brightest cluster galaxy (BCG) in the cool-core cluster MACS 1931.8-2635. Our observations reveal 1.9±0.3×10101.9 \pm 0.3 \times 10^{10} M⊙_{\odot} of molecular gas, on par with the largest known reservoirs of cold gas in a cluster core. We detect CO(1-0), CO(3-2), and CO(4-3) emission from both diffuse and compact molecular gas components that extend from the BCG center out to ∌30\sim30 kpc to the northwest, tracing the UV knots and Hα\alpha filaments observed by HST. Due to the lack of morphological symmetry, we hypothesize that the ∌300\sim300 km s−1^{-1} velocity of the CO in the tail is not due to concurrent uplift by AGN jets, rather we may be observing the aftermath of a recent AGN outburst. The CO spectral line energy distribution suggests that molecular gas excitation is influenced by processes related to both star formation and recent AGN feedback. Continuum emission in Bands 6 and 7 arises from dust and is spatially coincident with young stars and nebular emission observed in the UV and optical. We constrain the temperature of several dust clumps to be â‰Č10\lesssim 10 K, which is too cold to be directly interacting with the surrounding ∌4.8\sim 4.8 keV intracluster medium (ICM). The cold dust population extends beyond the observed CO emission and must either be protected from interacting with the ICM or be surrounded by local volumes of ICM that are several keV colder than observed by Chandra.Comment: Accepted for Publication in ApJ, 19 pages, 11 figures. Minor revisions to the discussion and accompanying figur

    Biochar for gas sensors devices

    Get PDF
    In recent years, biochar applications are present in many fields [1]. It has been studied as substitution for more expensive carbon materials like carbon nanotubes, graphene and others. The evident advantage for biochar is its low cost of production, being an environmentally friendly source of huge carbon content. On the other hand, nowadays the main application of this material is as field amendment in agriculture [2]. Starting for the peculiarity of biochar, it is possible to modify its features. For instance, after high temperature treatments, its surface area can increase sharply. Please click on the file below for full content of the abstract
    • 

    corecore